🎯 목표: 다양한 데이터 소스를 기반으로 고객의 신용 점수를 자동 평가하여 대출 심사 속도를 높이고 조기 리스크를 감지
📦 솔루션: 데이터 융합 + 머신러닝 기반 리스크 모델 + 설명 가능한 AI 엔진
⚙️ 기술 스택: XGBoost, SHAP, Pandas, FastAPI
📈 성과: 리스크 분류 정확도 22% 향상, 심사 시간 3일 → 6시간으로 단축
⏱️ PoC 기간: 4주
🎯 목표: 다양한 데이터 소스를 기반으로 고객의 신용 점수를 자동 평가하여 대출 심사 속도를 높이고 조기 리스크를 감지
📦 솔루션: 데이터 융합 + 머신러닝 기반 리스크 모델 + 설명 가능한 AI 엔진
⚙️ 기술 스택: XGBoost, SHAP, Pandas, FastAPI
📈 성과: 리스크 분류 정확도 22% 향상, 심사 시간 3일 → 6시간으로 단축
⏱️ PoC 기간: 4주
Overview – Predict power consumption of various sites based on past data and weather data. – Serverless system running on AWS – Collect data from IOT Advantages &...
Challenges: Many businesses want to train new employees and evaluate the training result so that businesses can see whether or not newcomers adapt to jobs and their training sessio...
BAP의 개발서비스에 대한 소개를 경청해주셔서 감사합니다
02/08 20:31 ✓